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A Law of Large Numbers and a Central 
Limit Theorem for the Schriidinger Operator 
with Zero-Range Potentials 
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We consider the Schr6dinger operator with zero-range potentials on N points of 
three-dimensional space, independently chosen according to a common dis- 
tribution V(x). Under some assumptions we prove that, when N goes to infinity, 
the sequence converges to a Schr6dinger operator with an effective potential. 
The fluctuations around the limit operator are explicitly characterized. 
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1. INTRODUCTION 

The study of the Schr6dinger operator with zero-range interactions in three 
dimensions goes back to 1935, when Bethe and Peierls (1) used this model 
to study the system consisting of a neutron and a proton. Fermi also 
employed this model when analyzing scattering of neutrons in hydrogenous 
substances (e.g., parafin) in 1936 (2) (see also Ref. 3). Thomas (4) showed 
how to obtain the Hamiltonian with zero-range interactions (point interac- 
tions) from Hamiltonians with suitably scaled short-range interaction. The 
rigorous analysis was initiated in 1961 by Berezin and Faddeev (5) in an 
attempt to treat the three-body problem. Their technique was to study 
certain self-adjoint extensions of the Laplacian suitably restricted. By now 
there are several ways to define rigorously a Schr6dinger operator in three 
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dimensions with finitely or infinitely many point interactions located on a 
discrete set in R 3. For  a comprehensive mathematical treatment of 
Schr6dinger operators with point interactions in one to three dimensions 
we refer to Ref. 6. The easiest way mathematically to introduce the 
Schr6dinger operator -A~, v with point interactions located on the set Y= 
{Yl ..... YN} with strength ~ =  ((~1,---, ~ u )  is to define it as the unique self- 
adjoint operator --A~, r in L2(R 3) whose resolvent equals 

N 

( - A ~ , , r - k 2 ) - l = G k +  
j , j ' = l  

[F~,r(k) ~]jj, Gk( . - -  yj,) Gk(" - yj) (1.1) 

where F~, r(k) is the N x N matrix 

[(ik) IN F~, r(k) = ~ j  - ~-~ Fjf - Gk(Y;-- Yf) , 
j , j '= l  

and 

Im k > 0 (1.2) 

G ~ = ( _ A _ k  2) 1, 

fGk(x) ,  x # 0 
Ck(x) = (0, x = 0 

eik Ixl 

Gk(X) = - -  
4 n  Ixl 

I m k > 0  

(1.3) 

Let us comment briefly on the definition given above. 
For  

Ikl 
- -  >> 1 and (inf ~j) inf [yj - y j, I >> 1 
inf ~ s  " J' ~ J 

J 

we get [F~, y (k ) ] j j ,  ~ O~j3jj,. In this approximation 

( - J ~ , ~ -  k2) - '  (x, y)= G~(x-  y )+ E i a ~ ( x -  yi) a k ( y -  yi) 
i = l  ~ i  

which formally can be written 

( - - A ~ , r - - k 2 ) - ' = ( - A - k  2) 1 - ( - A - k 2 ) - I w ( - A - k 2 )  -1 

with 

(1.4) 

(1.5) 

U _1 
W(x) = - )2 ,~(x- y/) 

i=l  O~i 
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Then (1.4) is what one obtains by expanding the formal operator 

[ ], - A -  - - 6 ( x -  y i ) - k  2 
i - - l ~ i  

up to the first order in a Neumann series. Equation (1.4) has been the basic 
formula for the computation of scattering data in important applications, 
for example, neutron scattering by liquids and solids. See, e.g., Ref. 7. 

As an aside, we mention that the formal expansion (1.5) cannot be 
continued beyond the first term without giving rise to divergences. On the 
contrary, from (1.1) one can get a low-energy, small-scattering-length 
expansion which is free of divergences. To the best of our knowledge this 
possibility has yet to be exploited in applications. 

Let V be any positive density distribution such that 

V(x) >>. O, f g(x) dx = 1, II VII 2 < oo 
JR 3 

In particular, V belongs to the Rollnik class, i.e., 

II vii ~ - f .  I V(x)l I V(y)l dx  dy <~ c II vii I/3 N vii 22/3 < oo 
3 I x - y l  2 

(see, for example, Ref. 8). 
On the set of configurations y(N) = {y]m,..., yCNu)} of N points of R 3 we 

consider the probability measure {V(x )dx}  | [in such a way that the 
points yl N~ are identically and independently distributed according to the 
common density V(x)]. 

Given any real function ~(x), x E R  3, such that 0<Ca<l~l (x)< 
c2 < 0% continuous apart from a set of V(x)dx-measure zero, we define 
c~(N)_ = {c~(y~ N)) ..... c~(y~N))}. 

By the law of large numbers we have 

lim 1 ~ G k ( x _ y l U ) ) ~ G k ( y l U ) _ y  ) 
Uro~ N~_~ ~ty~ 

V ( z )  .~ , 
= jR 3 G k ( X  -- Z) " ~  t rk t2  --  y )  dz 

At least at the formal level expressed by (1.4) and (1.5) it is then suggested 
that 

(__ANcl~N) yiNl__k 2) 1 ~' - - A  
, NToo 
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Notice that any potential U(x)~ L2 c~ L 1 can be written as the ratio 
VIa of a density distribution in L2 with a function ~ satisfying the 
assumptions stated above. In fact, it is enough to define 

V=[U' (x)/fR [Ul (x)dx 

~=(sign U)(x)/fr~3lU] (x) dx 

The aim of this paper is to give a proof of a law of large numbers for 
Hamiltonians with point interactions, thereby proving that any 
Schr6dinger operator with potential in L 2 c~ L1 is a limit of a sequence of 
such Hamiltonians. Moreover, the fluctuations around the limit operator 
can be completely characterized. 

Our main result will be: 

T h e o r e m  1. Under the assumptions on V, y(N), and (~(N) made 
above, uniformly on a set of configurations y(U) of measure increasing to 1 

as N goes to infinity, for k = i w/2, 2 positive large enough, 

s-lim --AN~(N~N~+2) ~= --A-- + 2  ----A~ (1.7) 
N]'oe 

In the next section we will give a proof of Theorem 1 based on an 
analogous result proved in Ref. 9. 

The result on the fluctuations around the limit operator A~ is 
expressed in the following: 

Theorem 2. For any f ,  g~L2(R 3) the random variable 

N1/2(f, [( - A  N~'~, :~ul + 2)--1 __ A~V] g)  ~ ~ , ,g(y(N))  

converges in distribution, when N goes to ~ ,  to the Gaussian random 
variable if, g of mean zero and variance 

, -- -~A~vg)L 2 

where 

(s, s')L~ = IR, s(x) S'(x) V(x) dx 

Only slight modifications of the steps followed in Ref. 10 for a similar 
problem are required to obtain a proof of Theorem 2. Rather than 
reproduce the proof here, we refer the reader to that paper. 
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2. THE LAW OF LARGE N U M B E R S  FOR H A M I L T O N I A N S  
WITH POINT INTERACTIONS 

In order to stress the analogy with the problem analyzed in Refs. 9 and 
10, which we will follow closely, we briefly mention the relation between 
operator (1.1) and the "approximate" Green's function of a boundary value 
problem on spheres shrinking to the points of Y. 

It is outside the scope of this paper to state rigorously the connection 
between the two problems. We are convinced, however, that the 
asymptotics of the associated boundary value problem for a finite or an 
infinite number of points could be important in applications. We plan to 
come back to this in further work. 

Let B~ be the closed sphere of radius r around yi ~ Y, B~= {xffR3l 
I x -  Y~I ~< r}. Consider the problem 

- (Au)(x) + 2u(x) = f(x),  

u(x) + ~;(r) Ynn (x) = 0, 

\ i = 1  

x~3B~, i =  1,..., N 

(2.1) 

where 7i(r) are N bounded functions of r E [-0, 1 ] and O/On indicates normal 
derivative in the direction outgoing from the spheres. 

As for the Dirichlet problem in Refs. 9 and 10, for small r, we will try 
to approximate the effects of surface terms with point sources placed at the 
points of Y in the form 

N 

fi(x)= (Gi,/~f)(x)+ ~ qSGi,/~.(x- yj) 
j = l  

By direct computation [-we will assume enough regularity on f to 
guarantee existence and boundedness of (O/~?n)(Gi,/;~f)], for x E 0B 7 

~(x) + ~,(r) Ynn (x) 

= (G~,/~f)(yi) + [-(Gi,/~f)(x)- (G~,/~f)(yi)] 

+ 7,(r) -~n(G,,/~f) (x)+ ~ qSG,,/~(yi-yj)  
j = l  

N 

+ ~ q)[-6,,/~(x- yj)-  6~,/~(y~- y:)3 
j = i  

+ @ exp(_ 21/2r) N 

4~r + ~ y~(r) q~ (x - yj) 
j = l  
j ~ i  

_ ~,i(r) q)21/2 e x p ( -  2 1 / 2 r )  e x p ( - 2 m r )  
4~r "- yi(r) q} 4~r2 , x E OB~. 



210 Figari, Holden, and Teta 

To cancel singular terms, one has to choose 7~(r)= r +  ~ .  4ur 2. Further- 
more, if now the charges q} are chosen in such a way that they satisfy the 
linear system of equations 

~ [(aj+ ~-~u )6o-Gz,/~(Y~-Yfl]qJ-=(G~,/;.f)(Yi) 
j = l  

o r  

one gets 

N 

i _ ]~ (Gi,/af)(yj) q ) -  Z [F~ ,y ( ix /2 ) - '  
j = 1  

~(x) + ?i(r) ~ (x) = O(r), x e OB 7, i = 1,..., N 

In this sense, point interactions located at the points of Y act like 
mixed boundary conditions at each of the points of Y. 

We now turn to the proof of Theorem 1. From the definition, for any 
f,  g~  L2(R3), 

(f, (__ANot(N),y(N)71_~) lg) 
N 

= ( f ,  G,,/~.g)+ Z [FNd(N),'N'(ix/2)]~ 
i , j ~ l  

x (Gi~/;~f)(y(N))(Gi~/;~ g)(y}N)) (2.2) 

The above discussion suggests splitting (2.2) into 

N 

(f, (-du~(u),r~)+ 2)-l g ) = ( f  , Gi,/~g)+ Z q~,g(Gi~/~f)(Yl N)) (2.3) 
i = 1  

where 

Na(yJN))+--~U q~,g-- Gi,/;.(YlN)--YJN))q~.g 
i ~ l  

~_ (Gi.x/)~ g ) (y (N) ) ,  j = 1 ..... N (2.4) 

To show that the linear system (2.4) is solvable, in such a way that it can 
be taken as an unambiguous definition of the q), g, we notice first that 

N H.s. ~ - .  ~,j=l 16, 2 l y I N ) - - Y ( t V ) I  2 ))1/2 (2.5) 
i ~ j  
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where NAII H.s. denotes the Hilbert-Schmidt norm of a matrix A, and where 

- -  ; ,  (N) (C~,/~)~j= a ~ , / a y ~  _ y~U)) 

By the law of large numbers and by our assumptions on the density 
distribution V, we then have 

~< c(,~) II Vll 
H.S. 

with limxr ~ c(2)=0,  IIVHR< oo. 
This implies that the matrix 

1 

[where c~i- ~(ylN))] has a bounded inverse for an appropriate choice of 2 
and N sufficiently large. 

In order to analyze the properties of the q~. g when N is very large, we 
consider the integral equations corresponding to (2.4) in the continuum 

C~(X) q;,g(X) -- ~R~3 G~,/~(x-  y) V(y) q~,g(y) dy = (Gi,/;. g)(x) (2.6) 

which is solved, for 2 large enough, by 

c~(x) qz, g(x)= [(--A - V/c~ + )0 -1 g](x) 

Notice that, by our assumptions on V, such a function belongs to the 
operator domain of the Laplacian. In particular, it is continuous, implying 
the continuity, V(x)dx-almost everywhere of the function q;.g(X). 

Comparing (2.6) with (2.4), we find 

= ( o 1 ~ ) i +  (o~,g)i 
where 

j = l  

1 
N1/2 ( G i~/)~ VqL g)(yl N)) 

2 q~,g(y~N)) 
(O~,g)i-- 41rN3/2 
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By direct computation, 

where 

E (O~,~), = - - y ~  (1. ~ 
i 1 

N - 2  
N 2 []G~/,tVq.Lg[[~2r 

E (O,~,g)i = ~  Ilq).,gll~ 
i 1 

(2.7) 

(2.8) 

(G~,/zf)(x) = fl~3 [G,,/~(x - y ) ] 2 f ( y )  dy 

From (2.7) and (2.8) we infer 

/ 2 =0, / = 1 , 2  lim E (O~,g)i 
N~'oo  i 1 

which together with the invertibility of the matrix 

U 

gives us that for any g E L2(R 3) and 2 sufficiently large 

lim [Nq~ g--q;,.g(ylN))] 2 = 0  (2.9) 
N T ~ 1 7 6  i 1 ~' 

on a set of configurations y(m of measure going to 1 as N goes to oe. 
The proof of Theorem 1 follows now easily from 

(f,I(_AN~(N),IAN)+j~)_I (__A V_.k,~) 1]g) 
( ( )lg) 

= ~ q~.,g(Gi./.~f)(y~U)) - f , ( - - A + 2 )  , V  _ A _ V + 2  
i = 1  ~ 

N 

= [q~, g -  q~., ~(Y}N~)/N](a,./~.f)(Y}~) 
i = 1  

1 N 
+~ Y; q~,~(Yl~)(a'./~f)(Yl~)- I,~, (c~./~f)(x) q~,~(x) V(x) ax .= 

~<sup Iai,/~fl (x) [Nq~.g--q~,~(y~U~)]~ 
x i = l  

+ 1,7~ g(Y(u~)-- E[ ,~.(Y(N~)]  I (2.10) 



Schr6dinger Operator with Zero-Range Potentials 213 

where 

N 

~5fg(Y(m) = ~ q~,g(Ylf))(G~c~f)(Yl N)) 
i = 1  

Again by direct computation 

E f E f 2 [~).,g-- q;.,gl 

l { f  R q~,g(X) = N 3 (G,.,/4 f)2 (x) V(x) ax 

C 
~<--sup IG~/)~fl 2 (x)[llq~,g]122+ (1, Iq~,gl 2 ) J  

N :, 
(2.11) 

From (2.9) (2.11), taking into account that supx [Gicxf l  ( x )~  c IIfh[2 and 
our assumptions on V, we conclude that for every gr  on a set of y(u) 
of measure going to 1 as N goes to infinity 

lira {l(f, E(--AN=,U~.,+.~) 1--( - A -  V/~+).)-llg)l/llfll2}=O 

concluding the proof of Theorem 1. | 

3. C O N C L U S I O N S  

The Hamiltonian with zero-range potentials or point interactions 
supported on a discrete set of points y(U) is defined by (1.1) in an implicit 
way, via its resolvent. 

The law of large numbers guarantees the convergence of the measure 

1 

N - y l  

to V(x) dx when N goes to infinity if V(x) is the common distribution of 
the independently distributed vectors yl N) ~ R 3. We proved that the same 
property holds for the Hamiltonian (1.1), together with a corresponding 
central limit theorem. 

It is possible to analyze, in an analogous way, the convergence of the 
scattering data for the approximate Hamiltonians to the limit ones. 

Notice that in the limit we studied the wave number is kept finite, the 
interparticle distance is of order N 1/3, and the scattering parameter ~ i ot 
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order N 1. The wavelength of the incoming particle "sees" only the density 
of scattering lengths e-~(x) V(x). 

Higher energy limits are very important in applications. In particular, 
the one where the wavelength is of the same order as the interparticle 
distance is the relevant case in many problems of scattering by liquids and 
solids. As we mentioned in the introduction, there does not seem to be a 
coherent approximation scheme available going beyond the linear term in 
the scattering parameter. 

We conclude by mentioning that, with some additional technical 
complications, it is possible to extend the results given in this paper to 
potentials of the Rollnik class. 

The Rollnik condition seems to be very natural in our context, being 
equivalent to the request that the system of "charges" q~(x) has a finite 
energy. (For the same reason, we believe that the same results cannot be 
generalized to a larger class of potentials.) 
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